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Abstract: Gambierdiscus is a marine benthic dinoflagellate
genus that currently contains 19 species; some of them are
toxigenic, producing ciguatoxins, maitotoxins, and other
toxic compounds. The objective of this study was to docu-
ment the morphological and molecular identification
(ITS, 5.8S and 28S of the rDNA) of two strains of Gambier-
discus from La Gaviota Island, Gulf of California, Mexico,
and a toxicity test. The shape of the 2′ plate varied between
hatchet-shaped and rectangular, that complicated the dif-
ferentiation between G. carpenteri and G. toxicus. Molecu-
lar markers of the three rDNA regions allowed
confirmation of the taxonomic identity of G. carpenteri,
separating this species from other congeners with high
phylogenetic affinity, such as G. excentricus, G. toxicus and

G. caribaeus. Studies of the morphological taxonomy of
G. carpenteri are scarce; therefore, due to the similarity
between species, the combination of morphological and
molecular tools is recommended for the identification of
species, such as G. carpenteri, G. excentricus, G. toxicus and
G. caribaeus. The mouse bioassay showed that the exam-
ined isolate was toxic, and it is a potential etiology of
ciguatera fish poisoning cases in the region. This study
provides the first reliable report and ribosomal sequences
of G. carpenteri for the Gulf of California, as well as data on
mouse bioassay toxicity.
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1 Introduction

Gambierdiscus R. Adachi et Y. Fukuyo 1979 (Dinophyceae:
Gonyaulacales) is a sensu stricto epibenthic group of the-
cate dinoflagellates. It is found living on a variety of sub-
strata, such as macroalgae (e.g., Dictyota spp., Padina sp.,
Phyllospora sp., Halimeda spp. and others), seagrasses
(e.g., Thalassia testudinum Banks ex König), sandy sub-
strata, as well as live and dead corals (Kohli et al. 2014;
Larsson et al. 2018; Litaker et al. 2009; Murray et al. 2014; Xu
et al. 2016).

Currently, Gambierdiscus comprises 19 taxonomically
accepted species (Guiry and Guiry 2024), with a pantropical
distribution (Litaker et al. 2009). Gambierdiscus carpenteri
Litaker, M.A. Faust, W.C. Holland, Vandersea et P.A. Tester
has its type locality in South Water Cay, Belize, and it has
been hypothesized that it has a wide geographic distribution
since, under laboratory conditions, it shows a high tolerance
to changes in temperature, salinity, and irradiance (Litaker
et al. 2009, 2017; Xu et al. 2016). Gambierdiscus carpenteri has
been reported in theMexican Caribbean (Litaker et al. 2009),
Florida (Rains and Parsons 2015; Xu et al. 2016), North Car-
olina, USA, Mariana Islands, Guam Island, Fiji Islands
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(Litaker et al. 2009), Australia (Kohli et al. 2014; Larsson et al.
2018; Sparrow et al. 2017), Bolinao, Pangasinan, Philippines
(Vacarizas et al. 2018), and in Ly Son Island, Vietnam
(Nguyen-Ngoc et al. 2023).

Gambierdiscus species have large cells with a trans-
diameter ranging from 31 to 140 µm (Hoppenrath et al.
2014). The cells are asymmetric, anteroposteriorly (lentic-
ular) or laterally compressed (globular) and rounded in
apical and antapical view. The cingulum is ascendingwith a
curved end that can be seen in ventral view. Live
cells present numerous green to brown chloroplasts
(Hoppenrath et al. 2014). Following the Kofoidean system,
the plate formula is Po, 3′, 0a, 7″, 6c, 6–8s, 5‴, 1p, 2″″
(Hoppenrath et al. 2023).

The taxonomic diagnostic characters are the shape and
size of the plates: 2′ (hatchet or quadrangular shape), 4″
(symmetrical or asymmetrical) and 2″″ with a dorsal end
terminating in a straight or oblique point (Litaker et al. 2009;
Wang et al. 2022). The shape and size of the apical pore
plate (Po) varies (Hoppenrath et al. 2014). Identification to
species level requires a combination of molecular and
morphological techniques, due to high morphological simi-
larity between species (e.g.,G. toxicus R. Adachi et Y. Fukuyo,
G. excentricus S. Fraga and G. carpenteri).

Information about toxicity and toxin profiles in G. car-
penteri is scarce (Litaker et al. 2009). Strains from Australia
have been reported to produce maitotoxin-3 (MTX-3) and
related compounds in cells grown at 18 and 27 °C (Kohli et al.
2014; Larsson et al. 2018). Strains from the Caribbean Sea and
the Gulf ofMexico contain low concentrations of ciguatoxins
(CTXs; 0–1.4 fg eq cell−1) (Litaker et al. 2017). In the mouse
bioassay (MBA), Australian strains at a dose of 2.4 mg kg−1

caused a decreased respiratory rate and respiratory paral-
ysis (Kohli et al. 2014). This species also caused intermediate
hemolytic activity in human erythrocytes (Holland et al.
2013).

2 Materials and methods

2.1 Strains and culture conditions

Two strains (GCARBAPAZ-1, GCARBAPAZ-3) of Gambier-
discus were obtained from La Gaviota Island (24°17′24.7″
N, 110°19′52.6″W), Bahía de La Paz, Gulf of California.
Strains were isolated in April 2019 by L.J. Fernández-Her-
rera. Cells were separated by capillary pipettes in drops of
modified GSe medium (Blackburn et al. 2001; Bustillos-
Guzmán et al. 2015), and a progressive scale-up was

performed until reaching 20–25 ml volumes. Monoclonal
cultures were maintained for several months in modified
Kmedia (de Vera et al. 2018) at a salinity of 34, temperature
of 24 °C ± 1 °C, with continuous illumination of
150 μmol m−2 s−1, and a 12 h light:12 h dark cycle in flat-
bottom 50-ml tubes.

2.2 Light microscopy

Cellular characteristics, such as cell shape, size, and the
shape, arrangement, and size of thecal plates, were ob-
tained using a light microscope (LM): an inverted micro-
scope (Axio Vert.A1, Oberkochen, Carl Zeiss, Germany) and
an epifluorescence compound microscope (Axio Scope.A.1,
Carl Zeiss, Oberkochen, Germany) equipped with an Axio-
cam 506 color 6-megapixel digital camera. Staining was
performed with Calcofluor White M2R 0.2 % (Fritz and
Triemer 1985) and Trypan Blue 0.2 % (Taylor 1978). Dissec-
tion of the theca was conducted to observe the position and
shape of the thecal plates.

2.3 Scanning electron microscopy

To prepare samples for observation in a scanning electron
microscope (SEM), protocols of different authors were used
to process thecate dinoflagellate cells (Gómez-Lizárraga et al.
2019). Cells were fixed in glutaraldehyde (4 %), and organic
matter was removed with hydrogen peroxide stock solution
(37 %). Further, samples were left for 5 days in hydrogen
peroxide to remove excess mucilage and, once the thecae
were clean, they were centrifuged (Thermo Scientific™
Sorvall™ Legend™ XTR) at 800g at 22–24 °C for 2 min with
cold sterile distilled water. Samples were dehydrated grad-
ually in ethanol (EtOH) of 10, 20, 30, 40, 50, 60, 70, 80, 90 and
100 %. At each dehydration step, cells were resuspended
gently for approximately 1 min and centrifuged at 800g
at 4 °C for 5 min. Samples were dried with the addition of
200 μl of HMDS (hexamethyldisilazane) and mounted on
aluminum sample holders.

Samples were processed at the SEMAcademic Service of
the Instituto de Ciencias delMar y Limnología (ICMyL), of the
Universidad Nacional Autónoma de México (UNAM). Sam-
ples were coated with gold (standard thickness of 20 nm) in
an ionizer (Ion Sputter JEOL-JFC-1100, Japan) for 5 min,
voltage of 10–20 kV, working distance 20 mm, and examined
in a JEOL JMS-6360-LV type SEM, equipped with secondary
electron and backscattered electron detectors.
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2.4 DNA extraction, amplification, and
sequencing

DNA extraction was carried out using the kit Quick-and™
Miniprep plus universal (Zymo Research, Irvine, CA, USA).
For polymerase chain reaction (PCR), a mixture of 4 µl Mmix
5X, 14.8 µl of milli-Q H2O, 2 µl of each primer and 2 µl of DNA
was added to each sample. Primers for the amplification of
the 5.8S, 28S and ITS regions of rDNA published by Adachi
et al. (1996) for the 28S region and Hosoi-Tanabe et al. (2006)
for the ITS region. All PCR reactions were performed using
an iCycler PCR System (Bio-Rad Laboratories, CA, USA). The
amplification program for the 28S (gen D1-D2) and 5.8S re-
gions of the rDNA consisted of an initial denaturation at a
95 °C for 5 min, followed by 35 cycles of 95 °C for 1 min, 52 °C
for 1 min and 72 °C for 2 min, with a final extension at 72 °C
for 7 min. The amplification program for the ITS region
consisted of a denaturation at 94 °C for 230 s, 35 cycles of
94 °C for 50 s, 47 °C for 1 min and a 72 °C for 80 s, and a final
extension of 72 °C for 10 min. PCR samples were purified
using the Quick-DNATM Miniprep kit (Zymo Research). The
purified PCR products were sent for sequencing to the
Molecular Cloning Laboratories (MCLAB, San Francisco, CA,
USA).

2.5 Sequence alignment and phylogenetic
analyses

The sequences were edited with the program Sequencher
v.4.1.4 to obtain a consensus sequence (Forward + Reverse).
BLAST analyses of the consensus sequences were performed
with the GenBank databases, and sequences were selected
for the reconstruction of the phylogenetic trees. Sequences
were aligned with the software MEGA 10.0.5 using the
MUSCLE alignment algorithm. For the phylogenetic analysis,
the models that best described the nucleotide substitution
rates were selected using the software JModel Test v2.1.10.
The Mega 10.0.5 software was used for the maximum
parsimony (MP) and maximum likelihood (ML) algorithms
and to compare the phylogenetic reconstructionMr. Bayes v.
3.2.7a for the Bayesian inference (BI) algorithm. Tree con-
struction was performed with a bootstrap of 1,000 replicates
for ML, and 3 × 106 generations for BI, sampling every 100
generations.

2.6 Toxin extraction

A batch culture of G. carpenteri (GCARBAPAZ-3) was estab-
lished in 2.8-l Fernbach flasks (Pyrex®, England) with 1 l of

culture media. During stationary growth phase with a cell
density of 48± 2 cells ml−1, cells were harvested on glassfiber
filters (GF/F) of 0.7 µm pore size and 47mm diameter
(Whatman™, UK). Filters were stored at −20 °C until
extraction (Chinain et al. 2010).

For toxin extraction, the GF/Ffilter was transferred to a
14-ml high clarity round polypropylene bottom sterile test
tube (Falcon®), vigorously macerated with a glass rod in
absolute MeOH. Volumes of 2 ml with 10 × 103 cells ml−1 of
the methanolic extract were recovered by centrifugation at
1,200g at 10 °C for 10 min (Eppendorf® 5702 R). This step was
repeated three times. All crude extracts were collected and
filtered with Acrodisc® Syringe Filters (Pall Life Sciences
GxF Glass 25 mm diameter HPLC certified 0.45 µm pore
size) and dried at 40 °C in a rotavapor (IKA® RV05). A sol-
vent partition was obtained from the resuspended extract
with 25 ml of dichloromethane and transferred to a sepa-
ration funnel of 250 ml and washed twice with 12.5 ml
MeOH: H2O (60:40). The dichloromethane phase recovered
the ciguatoxins (CTXs-like) and the MeOH: H2O phase con-
tained maitotoxins (MTXs-like) (Satake et al. 1993). The
phases were stored at −20 °C in glass vials until the MBA
was performed.

2.7 Toxicity assay

Toxicity tests were performed using the MBA model for
CTX-like and MTX-like activity in G. carpenteri; dichloro-
methane and MeOH: H2O phases were evaporated and
resuspended in 1 % Tween 60 and 0.9 % sterile saline solu-
tion. For intraperitoneal (i.p.) toxicity aliquots of 500 µl were
injected into male mice with a weight between 18 and 20 g
(strain CD-1 Harlan Laboratories, Mexico), in groups of
two animals. The control group was injected with Tween
solution. Clinical signs were observed for 24 h (FAO 2005,
Holmes and Lewis 1994, Satake et al. 1993), and results were
reported in mouse units (MU) according to Lewis (1995). One
MU is defined as the i.p. LD50 dose for a 20-g mouse. This
methodology was carried out in accordance with the
NOM-062-ZOO-1999 (SAGARPA 1999) and following the rec-
ommendations of Hedrich (2012).

The acute toxicity tests in the mouse model were carried
out based on the Official Mexican Standard NOM-242-SSA1-
2009 (https://www.dof.gob.mx/normasOficiales/4295/salud2a/
salud2a.htm) of the Ministry of Health (official method in
Mexico for the analysis of ciguatoxins) and in accordance
with the Official Mexican Standard NOM-062-ZOO-1999
(https://www.gob.mx/cms/uploads/attachment/file/203498/
NOM-062-ZOO-1999_220801.pdf) of the Ministry of Agri-
culture, Livestock, Rural Development, Fisheries and Food;
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Technical Specifications for Production, Care and Use of
Laboratory Animals (Bioterium certified by SAGARPA
no. B000.02.03.02.01.1155/08).

3 Results

3.1 Morphological observations

Gambierdiscus carpenteri Kibler, Litaker, M.A. Faust, W.C.
Holland, Vandersea et P.A. Tester 2009

Sampling locality: La Gaviota Island, Bahía de La Paz,
Gulf of California, Mexico.

Vegetative cell size: Cells in apical view presented a
length of 84.39 ± 6.18 µm and a width (transdiameter) of
87.03 ± 8.81 µm (n = 48). The cell length in anteroposterior
view was 55.87 ± 6.82 µm (n = 10). The cell width in ante-
roposterior view was 85.48 ± 8.49 µm (n = 8).

Description: Solitary cells, with active movement,
are attached by a mucilage filament that allows their
attachment to the bottom of culture tubes (Figure 1A–C).
Anteroposteriorly compressed cells, oval-shaped
(lens-shaped = lenticular) in apical and antapical views
(Figure 1D–G). Numerous brown-green chloroplasts are
present. Cingulum narrow, median, deeply excavated
(cavozone), ascending, and displaced twice the cingulum
width, with no offset of its ends (Figure 1H–J). Resting oval
shape cysts, with a thickened wall, colorless theca, where
the protoplasm is concentrated in the center of the cell
(Figure 1K). Temporary cysts with one membrane, oval-
shaped, dark brown (Figure 1L).

The apical plate 1′ is hexagonal, connected to the apical
pore plate (Po) and to the plates 2′, 3′, 1″, 2″, 6″ and 7″ (Fig-
ures 2A–D, F–L, 3A and 4F). The apical 2′ is the largest of the
epitheca, long, rectangular, connected to plates 1′, 2′, the
apical pore plate (Po), and the precingular plates 2″, 3″ and
4″ (Figure 2A–L). The Po is oval, surrounded by pores and
fishhook-shaped (Figures 3B and 4C). The Po plate
measured 9.51 ± 1.46 µm in length and 6 ± 1.25 µm in width
(n = 10). Aberrant cells were observed where plate 2′
appeared to have three divisions; such an arrangement of
apical plates is not consistent with what is currently
reported for the genus Gambierdiscus (Figure 4A). The
2″, 3″ and 4″ precingular plates are elongated
(Figures 2A–L, 4A–B and 5A). Plate 4″ is quadrangular and
asymmetrical (Figure 2C). Plate 2″″ is asymmetrical and
connected to plates 2‴, 3‴, 4‴, 1″″ (Figures 3C–I, 4D and
5B–F). Thecal surface has a high density of rather homo-
geneously distributed medium-sized and smaller pores
(Figure 5G–H). The average diameter of the medium-sized

pores is 0.41 ± 0.04 µm (n = 14), and that of the smaller pores
is 0.10 ± 0.02 µm (n = 10).

Plate formula: Po, 3′, 7″, 6c?, 6–7s?, 5‴, 1p, 2″″
(Hoppenrath et al. 2014; Litaker et al. 2009).

3.2 Molecular phylogenetic analyses

The phylogenetic trees generated for 5.8S, ITS, and 28S rDNA,
with the sequences of GCARBAPAZ-1 (accession numbers:
OR389496, OR389494, OR389492) and GCARBAPAZ-3 (acces-
sion numbers: OR389497, OR389495, OR389493) were
included in the G. carpenteri clade. Therefore, both strains
were identified asG. carpenteri, with bootstrap values of 99–
100 with MP and MV, and posterior probability values of
0.98–1 for IB.

The phylogenetic tree sequences obtained from the 5.8S
region formed a subclade with bootstrap supports above
98 %, which grouped the two sequences of this study with a
sequence of G. carpenteri from the Mariana Islands
(Figure 6). Phylogenetic reconstruction conducted with se-
quences of the 28S rDNA region showed a clear separation
between G. carpenteri, G. toxicus and G. excentricus
(Figure 7), in spite of the fact that these three species share
similar morphologies. Sequences of the ITS region for
Gambierdiscus are scarce, and molecular information does
not exist for all currently accepted taxa; however, the se-
quences analyzed in this study formed a clade of sequences
identified as G. carpenteri from Guam Island and Vietnam
with a bootstrap support of 95/90 and posterior probability
of 0.87 (Figure 8).

3.3 Toxicity assay

In the mouse bioassay, mice showed typical clinical signs for
CTX-like and MTX-like activities. The clinical signs for
CTX-like activity included: hypoactivity, hind limb paralysis,
piloerection, diarrhea (1/2 mice), lachrymation, dyspnea,
ataxia, tremor, wobbly upright gait, jumping, terminal con-
vulsions, with tail arching and death from respiratory fail-
ure. In the clinical signs for MTX-like activity, mice showed
hypoactivity, piloerection, progressive and severe paralysis
from hind extending to fore limbs, gasping and mild con-
vulsions preceding death.

The Gambierdiscus carpenteri strain from the Gulf of
California showed CTX-like andMTX-like activities. The LD50

of extracts with CTX-like was 5.99 mg kg−1. For the MTX-like
extracts, the LD50 was equivalent to 0.06 mg kg−1. Total ex-
tracts from both phases are equivalent to 1,400 cells per MU.
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Figure 1: Light micrographs of Gambierdiscus carpenteri. Strain GCARBAPAZ-1: (D, F–H, K, L); strain GCARBAPAZ-3: (A–C, E, I, J). (A) Culture in K medium.
(B) Mobile cells joined by mucilage (m). (C) Ventral view, epitheca (yellow contour), hypotheca (red contour), cingulum (Ci) and sulcus (Su). (D, H and I)
Apical-ventral view (H and I – empty thecae). (E and F) Antapical view; pusules (Pu) are shown. (G) Apical view; white arrow – eyespot. (J) Ventro-lateral
view, cingulum displacement shown. (K) Temporal cyst with a thin cell wall. (L) Non-motile cells with a thick cell wall, showing the process of encystment
(formation of resting cysts). Red arrows show the cell wall. (B–D, F–I, K and L): in bright field; (E): in phase contrast; (J) in epifluorescence regime. Scale
bars: 2.5 cm in (A); 160 µm in (B); 25 µm in (C, E, I and K); 20 µm in (J, D, F–G and L).
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Figure 2: Light micrographs of Gambierdiscus carpenteri from the Gulf of California, thecae and their fragments. Strain GCARBAPAZ-1: (A and B); strain
GCARBAPAZ-3: [C–L (C, F, I, K and L – thecae from inside)]. (A–D, F–L) Apical view, apical (′), precingular (″) and the pore (Po) plates. (E) The 2′ plate, hatchet-
shaped. Po – the apical pore plate. (A–F, H and I): in bright field; (G and J–L): in epifluorescence regime. Scale bars: 20 µm in (A, B, C, F, G and K); 10 µm in
(D, E, I, J and L); 30 µm in (H).
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4 Discussion and conclusions

In this study, plate 2′ was almost rectangular, with a small
protrusion toward the apical pore complex, being morpho-
logically similar to G. toxicus, and initially ruling out G.
carpenteri and G. caribaeus (Litaker et al. 2009). However, in
strains of G. carpenteri from Australia, this plate was
observed to be hatchet-shaped or rectangular (Kohli et al.
2014). This differed from the descriptions in Litaker et al.
(2009) and Wang et al. (2022) for strains from Belize. The

2′ plate observed in the strains GCARBAPAZ-1 and
GCARBAPAZ-3 is consistent with those in Kohli et al. (2014)
for the strain from Australia, indicating that in G. carpenteri
both morphologies can be present in plate 2´ (rectangular or
hatchet-shaped).

Cell size of G. carpenteri in this study averaged 88.2 µm
long and 84.7 µm wide in apical view (transdiameters).
Although the species exhibits variable cell size, the exam-
ined cells are consistent with what has been reported, with
cell sizes from 66 to 92 µm long and 65 to 85 µm wide

Figure 3: Light micrographs of Gambierdiscus carpenteri, thecae and their fragments. Strain GCARBAPAZ-1: (C and I); strain GCARBAPAZ-3: [A, B, D and E-H
(A, C, D and I – thecae from inside)]. (A) Apical-ventral view. (B) The hook-shaped apical pore plate (Po). (C) Antapical view, postcingular plates (‴). (D) Ventro-
antapical view, 1‴, 5‴, 1″″ and 2″″ plates. (E, G and H) Antapical view, postcingular (‴), antapical (″″) and posterior intercalary (1p) plates. (A, C, D, F and I): in
bright field; (E, G and H): in epifluorescence regime. Scale bars: 10 µm in (A and H); 5 µm in (B); 25 µm in (C, D and E); 30 µm in (F); 20 µm in (G and I).
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Figure 4: Scanning electron micrographs of Gambierdiscus carpenteri, strain GCARBAPAZ-1, from La Gaviota Island, Bahía de La Paz, Gulf of California.
(A) Cell in apical view: the apical (′) and precingular (″) plates; and the 2′ plate is split into three plates (a–c), and plate 3′ is split into two plates (a and b).
(B) Apical-left-side view, showing precingular plates and the apical pore plate (Po). (C) The apical pore plate (Po); variation in the number and arrangement
of thecal pores is shown. (D) Antapical-right-side view, postcingular (‴), antapical (″″) and posterior intercalary (1p) plates. (E and F) Apical view, a fragment
of the epitheca. Scale bars: 20 µm in (A, B and D); 2 µm in (C); 5 µm in (E); 2.5 µm in (F).
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Figure 5: Scanning electron micrographs of Gambierdiscus carpenteri, strain GCARBAPAZ-3, from La Gaviota Island, Bahía de La Paz, Gulf of California.
(A) Apical view. (B, D and F) Antapical view, postcingular (‴), antapical (″″) and posterior intercalary (1p) plates. (C) Antapical-ventral view, transitional plate
(t), sulcal right posterior plate (S.d.p.), precingular (″), postcingular (‴) and antapical (″″) plates. (E) Cells bound by mucilage (m). (G and H) Fragments of
thecal surface, white arrows indicate the smaller pores. Scale bars: 20 µm in (A, B and D); 10 µm in (F); 30 µm in (E); 1 µm in (G and H).
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(Hoppenrath et al. 2014; Kohli et al. 2014; Litaker et al. 2009;
Vacarizas et al. 2018). The Po sizes in this study (9.51 µm long
and 6 µm wide) agree with those reported in the literature
forG. carpenteri (Litaker et al. 2009). Position and connection
of the diagnostic plates 2′ and 4″ correspond to those
reported for G. carpenteri (Kohli et al. 2014; Litaker et al.
2009; Wang et al. 2022). Among the known Gambierdiscus
species, two types of thecal pores differing in size have been
reported so far in G. carpenteri, G. australes, G. carolinianus,
G. pacificus and G. caribaeus (Hoppenrath et al. 2023). This
study confirms the presence of the larger and smaller pores
in G. carpenteri (Figure 5H); however, this feature cannot be

considered as discriminatory, because of scarcity of infor-
mation about the theca ornamentation in other species of
the genus.

In culture, temporary cysts, which are a part of the life
cycle of species ofGambierdiscus, were observed. These cysts
can take from three days to five months to germinate when
conditions are suitable (Assunção and Portillo 2018). This
study also documented cysts with the morphology of vege-
tative cells, without flagella, absence of motility, a thick wall,
some with a reddish body, and the cytoplasm concentrated
in the center of the cell. The above also was documented for
Gambierdiscus balechii (Fraga et al. 2016).

Figure 6: Phylogenetic tree of the 5.8S rDNA region of species of
Gambierdiscus. The analysis was derived using the maximum parsimony
(MP), maximum likelihood (ML) and Bayesian inference (BI) methods. At
the nodes the bootstrap percentage (MP/ML) and posterior probability
(BI) are shown. The analysis included 17 sequences; dataset based on
712 pb. OR389496 = GCARBAPAZ-1, OR389497 = GCARBAPAZ-3, ND = no
data.

Figure 7: Phylogenetic tree of the 28S rDNA (D1–D3 region) of species of
Gambierdiscus. The analysis was derived using the maximum parsimony
(MP), maximum likelihood (ML) and Bayesian inference (BI) methods.
Bootstrap values (MP/ML) and posterior probability (BI) of each method
are shown at the nodes. The analysis included 32 sequences, with a total
of 358 pb. OR389492 = GCARBAPAZ-1, OR389493 = GCARBAPAZ-3,
ND = no data.
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The species similar to G. carpenteri, both morphologi-
cally and in terms of the genetic distances based on the LSU
sequences D8–D10, are G. excentricus, G. toxicus and G.
caribaeus (Rodríguez et al. 2017; Table 1). The D8–D10 (28S)
region of the LSU has been reported to be sufficient for the
identification of the genus Gambierdiscus (Vacarizas et al.
2018); however, this region does not separate G. excentricus
from G. carpenteri. This contrasts with the D1–D3 region,
which separates species with a high phylogenetic affinity,
such as G. carpenteri, G. excentricus, G. toxicus and G.
caribaeus (Ott et al. 2022; this study; Wang et al. 2022). For
example, the genetic distance between G. carpenteri and
closely related species is higher with the D1–D3 gene (0.052)
than with the D8–D10 region (0.005) (Fraga and Rodríguez
2014).

The taxa included in the phylogenetic analyses were
distinct; this was due to the limited information available for
each rDNA region, especially in the 5.8S and ITS regions of
the rDNA. This makes it difficult to perform a concatenated
analysis of the sequences of G. carpenteri, even with se-
quences of three markers, because there are no sequences
for some species or the sequences in the databases do not
come from publications and present inconsistencies in the
identification in the database. It has been widely discussed
whether the ITS/5.8S, D1–D3, D8–D10 LSU or SSU ribosomal
genes alone are sufficient to distinguish between dinofla-
gellate species. In this study, the three phylogenies showed a
pattern where the sequences obtained cluster with the
sequences of G. carpenteri that have been previously pub-
lished. In addition, the combination of the D1–D3 (28S) and
ITS/5.8S phylogenies in other studies were able to resolve
97 % of the dinoflagellate species examined, thus classifying
them as a rapid and reliable method for identification and
description of Gambierdiscus species (Ott et al. 2022; Wang
et al. 2022). In this study and others, the D1–D3 gene produces
coherent terminal groupings of all species described within
the genus Gambierdiscus, the same groupings being
obtained if multigene phylogenies are performed (Kohli
et al. 2014; Ott et al. 2022; Wang et al. 2022). It was demon-
strated that there may be interspecific divergences in some
species of Gambierdiscus, such as G. carpenteri, because the
sequences may contain variants with insertions and
deletions that are sometimes reflected in subclades within
the main clade (see Ott et al. 2022).

In the Mexican Caribbean Sea, G. carpenteri has been
previously reported in Cancún (Litaker et al. 2009), Isla
Contoy, Puerto Morelos (Almazán-Becerril et al. 2020), and
G. cf. carpenteri in Isla San José, Gulf of California
(Morquecho-Escamilla et al. 2017). Studies of the morpho-
logical taxonomy of G. carpenteri are rare. To our knowl-
edge, onlyfive studies include such analysis (Kohli et al. 2014;
Litaker et al. 2009; Nguyen-Ngoc et al. 2023; Vacarizas et al.
2018; Wang et al. 2022). Therefore, it was necessary to inte-
grate morphological and molecular tools (5.8S, 28S and ITS
rDNA gene sequences) to corroborate that both strains from
the La Gaviota Island, Gulf of California are G. carpenteri.

Several toxicity assays have been performed in strains
of G. carpenteri (Table 2) that have provided different results
depending on the assay and the strain tested. The G. car-
penteri strain tested in this study had a higher toxicity using
MBA, than strains from Australia. Kohli et al. (2014) and
Larsson et al. (2018) reported that the toxicity in MBA is not
sensitive to CTX-like or MTX-like. By LC-MS/MS no known
analogs of CTXs characterized in dinoflagellates were
found. In tropical strains of G. carpenteri isolated from
Australia, only analogs of MTXs were reported; however,

Figure 8: Phylogenetic tree of the ITS region of the rDNA of species of
Gambierdiscus. At the nodes, the bootstrap percentage (MP/ML) and
posterior probability (BI) are shown. The analysis included 23 sequences,
with a total of 283 pb. OR389494 = GCARBAPAZ-1,
OR389495 = GCARBAPAZ-3.
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temperate strains did not produce MTX-3 (Larsson et al.
2018). Polyether toxic compounds that have been detected by
LC-MS/MS in G. carpenteri were 2,33-dihidroxy-PCTX3C and
44-methylgambierone (previously reported as MTX-3,
Chinain et al. 2010).

Toxicity in G. carpenteri strains varies according to
their geographic origin. Gambierdiscus carpenteri isolated
from Hawaii presented 1.4 ± 0.6 fg CTX3C eq cell−1 and
6.3 ± 1.9 fg MTX eq cell−1 (Pisapia et al. 2017). Similarly,
Litaker et al. (2017) reported five toxic strains of G. carpen-
teri isolated from the Great Caribbean with a toxicity
ranging from0.3 to 1.4 fg CTX3C eq cell−1. In contrast, strains
of G. carpenteri isolated from the Philippines had a higher
toxicity. Vacarizas et al. (2018) reported a toxicity of
7.48 ± 0.49 pg Pbtx-3 eq cell−1 by the use of receptor binding
assays, andMalto et al. (2022) reported 12.36± 4.38 pg Pbtx-3
eq cell−1 using a radioligand receptor-binding assay. Not
much is known about the effect of environmental condi-
tions on the toxin content in Gambierdiscus species,
although G. carpenteri has a wide range of tolerance to
environmental conditions, on which toxin production
depends (Vacarizas et al. 2018).

The toxicity range of G. carpenteri is similar to the
toxicity reported for G. australes, G. balechii, G. carolineanus
and G. belizeanus from the North Atlantic, Caribbean Sea,
Gulf of Mexico, and Pacific, showing a similar CTX-like
activity, suggesting comparable levels of toxins produced
(Díaz-Asencio et al. 2019; Litaker et al. 2017; Pisapia et al.
2017). These results suggest that the toxicity documented in
G. carpenteri is closely related to the diversity of the

geographical environments inwhich it occurs and could be a
possible fingerprint of CTX and MTX production.

In the state of Baja California Sur, Mexico, 240 cases of
ciguatera fish poisoning (CFP) were reported from 1984 to
2011 (Nuñez-Vázquez et al. 2019). Four human intoxications
were associated with the consumption of Lutjanidae and
Serranidae fish species (Nuñez-Vázquez et al. 1998, 2019).
This study provides the first sequences of G. carpenteri for
the Gulf of California, and the MBA showed that the isolate
examined exhibits CTX-like and MTX-like activities. There-
fore, G. carpenteri is a possible agent that may be contrib-
uting to CFP cases in the region; however, further
confirmatory studies are required through various analyt-
ical techniques to confirm the presence of toxins aswell as to
determine their chemical structure. It is important to
monitor this species from various substrata and benthic
environments and to evaluate the possible conditions in
which it can proliferate, with the aim of protecting human
and animal health. The global distribution and the wide
range of environmental adaptability ofG. carpenteri indicate
the need for future studies after the first confirmed record
and possible toxicity of this species in the Gulf of California.
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Table : Morphological comparison of Gambierdiscus species.

Cell shape G. carpenteri G. excentricus G. toxicus G. caribaeus
Lens-shaped/lenticulara,f Lens-shaped/lenticulard Lens-shaped/lenticulara Round or lens-shapeda,f

Cell
size

Depth –a,f,g –b,d,e –a,f –a,f

Width –a,c,f,g –b,d,e –a,f –a,f

Po Length .a –b,d –a,f –a,f

Width .a ND .a .a

Shaped Oval, fishhook-shapeda,f,g Fishhook-shapedb Oval, short-shank, fishhook-
shapeda,f

Oval, short-shank, fishhook-
shapeda,f

′ Hatchet-shaped or rectangulara,b,c,g Rectangular-shapedb,d Moderately hatchet- shapeda,f Rectangular to hatchet-shapedf

″ Asymmetrica,c,f ND ND Symmetrica,f

″ Protrudes ventrallya ND ND Does not protrude ventrallya,f

p Wide, asymmetric, largea Narrow, width variableb,d Large and widef. Dorsal end
pointeda

Shorter and differently shaped from
G. carpenteria,f

Thecal surface Numerous pores and small very
shallow depressions between pores

Numerous poresb,d,e Smooth with numerous poresa Smooth with numerous pores and
small depressions between poresf

Dimensions are given in μm. ND, no data. aLitaker et al. (), bFraga et al. (), cKohli et al. (), dNascimento et al. (), eHoppenrath et al. (),
fHoppenrath et al. (), gthis study.
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