1	Spider guilds in a	maize polyculture	respond differently	to plant	diversification,
---	--------------------	-------------------	---------------------	----------	------------------

2 landscape composition and stage of the agricultural cycle

3

4	Running tit	t le : Spider g	guild div	ersity in a	a polyculture	landscape
---	-------------	------------------------	-----------	-------------	---------------	-----------

5

6 Luis G. Quijano-Cuervo^a, Ek del-Val^b, Rogelio Macías-Ordóñez^c, Wesley Dáttilo^d,

- 7 Simoneta Negrete-Yankelevich^{a*}
- 8 ^aRed de Ecología Funcional, Instituto de Ecología A.C., Xalapa, Veracruz, Mexico
- 9 ^bInstituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional
- 10 Autónoma de México, Antigua Carretera a Pátzcuaro 8701, Col Ex Hacienda de San José
- 11 de la Huerta, CP 58190, Morelia, Michoacán, Mexico
- 12 °Red de Biología Evolutiva, Instituto de Ecología A.C., Xalapa, Veracruz, Mexico
- 13 ^dRed de Ecoetología, Instituto de Ecología A.C., Xalapa, Veracruz, Mexico
- 14
- 15 Emails:
- 16 L. Quijano-Cuervo: luisquijanocuervo@gmail.com,
- 17 luis.quijano@posgrado.ecologia.edu.mx
- 18 E. del-Val: ekdelval@cieco.unam.mx
- 19 R. Macías-Ordóñez: rogelio.macias@inecol.mx
- 20 W. Dáttilo: wesley.dattilo@inecol.mx
- 21 *S. Negrete-Yankelevich: simoneta.negrete@inecol.mx (Corresponding author)

23 Abstract

1. Agroecosystem simplification for greater food production has led to the loss of

- 25 ecosystem services such as pest control by natural predators. Agroecological practices such
- as plant diversification have shown excellent potential to improve the abundance and
- 27 richness of crop predators such as spiders.
- 28 2. However, in agroecosystems with frequent disturbances such as annual crops, it is
- 29 unknown whether the positive effect of plant diversification on spiders depends on the
- 30 surrounding landscape and/or the stages of the agricultural cycle (*i.e.* periods with
- 31 differences in vegetation, weather, and agricultural practices).
- 32 3. Here, we evaluated the effect and interaction of local management (plant diversification),
- 33 landscape (forest areas), and agricultural cycle on the richness and abundance from the
- 34 main spider guilds of a maize polyculture in Mexico.
- 4. We found that greater crop diversification (*i.e.* addition of legumes and leafy plants)
- 36 caused a greater abundance of *ground-hunting* spiders. We also show that a larger area of
- 37 forest around the crop favors a greater richness and abundance of *ground* and *vegetation*

38 *hunting* spiders.

- 39 5. We found that each stage of the agricultural cycle had a different spider richness and
- 40 abundance, ground hunters were more common at the beginning of the cycle (e.g. winter)
- 41 while *vegetation hunters* and *web-builders* were more common during the peak
- 42 developmental stages of the crops (*e.g.* fructification).
- 43 6. Our findings support the idea that to foster functionally diverse spider communities that
- 44 potentially enhances natural pest control, we must jointly manage plant elements within the

- 45 crop, in the surrounding landscape, and considering the high dynamics of spider
- 46 communities throughout the agricultural cycle.
- 47 Key words: guilds, local management, forest, dispersal, temporal variation.
- 48

49 Introduction

50	The use of conventional practices to boost food production has contributed to the
51	decline of biodiversity in agricultural fields (Altieri & Trujillo, 1987; Lichtenberg et al.,
52	2017). This decline in agrodiversity has resulted in the loss of ecosystem services, such as
53	natural pest control through the activity of indigenous predators (Altieri & Trujillo, 1987;
54	Gallé et al., 2019). This issue holds significant importance as it is estimated that global crop
55	productivity could decrease by up to 40% due to damages inflicted by pest insects (FAO,
56	2021). Polycultures based on traditional systems such as "milpas" (i.e. polyculture
57	involving maize, beans, and squash as primary crops; Zizumbo et al., 2012) can be a viable
58	alternative for enhancing the biodiversity within agricultural fields (Altieri & Trujillo,
59	1987; Isakson, 2009), since these systems maintain a relatively high plant diversity by
60	cultivating and promoting a mixture of species while minimizing input usage, particularly
61	pesticides, which can be harmful to predators (Birkhofer et al., 2013). However, predators
62	such as spiders exhibit complex responses to factors that shape their diversity in
63	agricultural crops (Birkhofer et al., 2013). Therefore, to create effective management
64	strategies that promote taxonomically and functionally predator diverse communities for
65	natural pest control, a better understanding of the dynamics determining spider
66	communities in polycultures is necessary.
67	Agroecological management has been proposed as an alternative for sustainable
68	agriculture, aiming to maintain crop biodiversity (Wezel et al., 2014; Martínez-Camacho et
69	al., 2022). Crop diversification, achieved by incorporating plant species that enhance plant

- 70 heterogeneity and prey availability (Sunderland & Samu, 2000), is an agroecological
- 71 practice employed to foster increased spider richness and abundance (Samu, 2003;

72	Geldenhuys et al., 2021). However, it is likely that the effect of plant diversification on
73	spider richness and abundance is dependent on the composition of the landscape
74	surrounding the crops (<i>i.e.</i> natural and semi-natural habitat areas; Batáry et al., 2011;
75	Galloway et al., 2021). For instance, Galloway et al., (2021) showed that spider richness
76	only responded positively to agroecological management in perennial crops surrounded by
77	simplified landscapes (<i>i.e.</i> little forest cover). Within these simplified landscapes, an
78	increased availability of shelters and prey, promoted by a higher diversity of local plants, is
79	more important than in crops surrounded by diverse regional organisms sources (Batáry et
80	al., 2011). The success of implementing practices to enhance predator abundance and
81	contribute to pest control, may depend on the context of the landscape where the cultivation
82	plots are established (Batáry et al., 2011).
83	In annual crops, significant temporal variation occurs due to the intra-annual
84	dynamics of agricultural practices (e.g. plowing), weather conditions, and vegetation
85	(Kennedy & Storer, 2000). This intra-annual variability in crops, combined with species
86	phenology, creates a temporal dynamic in spider communities, leading to increased species
87	abundance and richness during the peak developmental stages of the crops (Triquet et al.,
88	2022). In addition, this temporal variation in the crops creates frequent disturbances that
89	cause spiders to become highly dependent on local and regional shelters (Birkhofer et al.,
90	2013; Gavish-Regev et al., 2008). A more pronounced positive effect of agroecological

91 practices on spider diversity is expected during stages characterized by greater disturbance

- 92 to communities, such as winter, coinciding with the majority of crop harvesting and
- 93 extreme weather (Gavish-Regev et al., 2008; Sunderland & Samu, 2000). Most studies
- 94 consider that the effect of local and regional management on spiders in agricultural crops is

static (Birkhofer et al., 2013; Lichtenberg et al., 2017). However, the effectiveness of
management practices appears contingent on the specific stages of the agricultural cycle in
which they are implemented (Schmidt et al., 2005; Schmidt & Tscharntke, 2005). This
would partly explain why some studies have not detected clear positive effects of
augmenting local vegetation and landscape heterogeneity on spider diversity (Sunderland &
Samu, 2000).

101 Spiders use different hunting and dispersal strategies (Cardoso et al., 2011), and 102 thus the response to factors that determine the spider communities in agricultural crops 103 differs between guilds (Michalko & Pekár, 2016; Michalko & Košulič, 2019). Notably, 104 some groups of spiders with high dispersal capacity (e.g. web-building spiders such as 105 Lyniphiidae, up to \approx 30km; Thomas et al., 2003) can rapidly recolonize crops after a 106 disturbance associated with an agricultural practice or the weather (Dauber et al., 2005; 107 Feber et al., 2015; Picchi et al., 2016). Conversely, guilds with more limited dispersal 108 abilities, which disperse only a few meters or kilometers by walking (e.g. ground hunters 109 such as Lycosidae, Decae, 1987), are expected to be more dependent on high local plant 110 diversity and the landscape. For example, Feber et al., (2015) showed that the richness and 111 abundance of ground-hunting spiders (Lycosidae) responded positively to local organic 112 management (suspended use of agrochemicals) and the number of natural habitats in the 113 landscape compared to other guilds with high dispersal capacity. This indicates that, it is 114 necessary to understand how the abundance and diversity of each spider guild are 115 differentially affected by factors associated with the local mangement, landscape, and 116 agricultural cycle to promote abundant and functionally diverse communities in the case of 117 annual crops.

118	In the present study, we evaluated in a field experiment the effect of diversification
119	of a traditional Mexican maize polyculture (milpa) on the richness and abundance of the
120	main spider guilds (ground hunters, vegetation hunters, and web-builders). Specifically, we
121	analyzed how such effect of plant diversification is modulated by the forest areas
122	surrounding the crops and the stages of the agricultural cycle. Given the intra-annual
123	variation of the maize polyculture, we expected the spider communities to have higher
124	species abundance and richness during the peak developmental stages of the crops (Triquet
125	et al., 2022). We also postulated to find higher spider richness and abundance in crops with
126	higher plant diversification and larger surrounding forest areas during stages with extreme
127	weather and scarcity of prey and shelters (stages of initial development and crop
128	senescence) (Sunderland & Samu, 2000). Finally, given that the response of spiders
129	depends on their hunting and dispersal strategies (Feber et al., 2015), we expected the
130	positive effect of crop diversification and perennial vegetation areas in the landscape
131	(forests) on spider richness and abundance to be stronger in guilds with low-mid
132	recolonization capacity (ground and vegetation hunters Feber et al., 2015).
133	
134	Methods
135	Study area and plots
136	We conducted the study in a maize polyculture area located in the community of
137	Ocotepec, Ayahualulco, Veracruz, Mexico (19°21'38.24" N, 97° 9'41.78" W; 2280 m.a.s.l.)
138	(Figure 1). The landscape of the study area is mostly dominated by large maize-growing
139	areas (in a polyculture with beans and squash called <i>milpa</i>), pastures/shrubs (areas with
140	grasses and shrub species, mostly Baccharis conferta Kunth), a few remnants of natural

141	forest, and some pine-growing areas (Figure 1). The milpas planted in the study area are
142	exclusively used to feed the farmers and their families, their management is conventional
143	(with the use of industrial fertilizers and plowing), and corn grain yields reach
144	approximately 2,300 kg·ha ⁻¹ (Martínez-Camacho et al., 2022). The agricultural cycle in the
145	area occurs from March to November and the corn is harvested only once a year.
146	For this study, we selected the plots of an agroecological diversification experiment
147	established by our research team since 2018. These are 12 plots of 200 m ² each (20 m x 10
148	m) with three levels of interspecific plant diversification (4 replicates/plots per level). The
149	plot selection was done in collaboration with producers that volunteered in the project
150	Mano Vuelta, whose objective was to improve the sustainability of the production of food
151	for the rural families of the region (Martínez-Camacho et al., 2022). The participants were
152	informed of the required characteristics and the objectives of the project, and voluntarily
153	offered land where the experimental plots could be set up for several consecutive years.
154	The diversification experiment was established in the 12 plots at least 4 years prior to the
155	present study and was associated with an agroecological management. This agroecological
156	management was carried out by the owners of the plots, who were weekly joined by the
157	Mano Vuelta project team, and consists of completely organic fertilization with a fermented
158	fertilizer (bokashi) prepared in situ with stover, sheep manure, ash, pulque (locally
159	fermented agave beverage as a source of microorganisms), soil, and unrefined brown sugar,
160	as well as the complete absence of tillage practices. The three levels of plant diversification
161	were: level 1 (M-B-S) = plots planted with the basic crop triad of maize (Zea mays L.), fat
162	bean (Phaseolus dumosus Macfady), and squash (Cucurbita ficifolia Bouché); level 2 (M-
163	B-S + L) = plots planted with the basic triad and additional legumes (black beans

164	[<i>Phaseolus vulgaris</i> L.], peas [<i>Pisum sativum</i> L.], and faba beans [<i>Vicia faba</i> L.]); and level
165	3 (M-B-S + L + H) = plots planted with the basic triad, legumes, and additional leafy plants
166	(chard [Beta vulgaris L. var. cicla] and coriander [Coriandrum sativum L.]) (Martínez-
167	Camacho et al., 2022). The legumes and leafy plants used for the diversification of the plots
168	were selected because they are crops frequently observed in local backyard vegetable
169	gardens and some milpas, and to add nutrient diversity to the diet of local families. The plot
170	diversification was carried out at specific moments of the agricultural cycle: legumes were
171	added during winter and leafy plants were added during the developmental stage (see
172	below). Data from the 2021 agricultural cycle were used for this study.
173	
174	Milpa agricultural cycle
175	For this study, the 12 plots were sampled during 5 stages of the 2020-2021 milpa
176	agricultural cycle (Figure 1). Each stage represents an important period of the phenology of
177	the crops. Winter (December-January): corresponds to the moment after the collection of
178	maize, beans, and squash. Winter legumes are planted in the plots with diversification
179	levels 2 and 3 (faba beans and peas); Planting (February-March): the basic crop triad is
180	planted in all plots. Winter legumes are maturing during this season; Growth (April-
181	August): winter legumes are harvested, and leafy plants are planted in the plots with
182	diversification level 3. The plants of the basic triad germinate, grow, and flower;
183	Fructification (September-October): the plants of the triad are mature and bear fruits, and
184	the leafy plants are harvested in the plots with diversification level 3; Harvest (November):
185	maize, beans, and squash are harvested and completely removed from all plots (Figure 2).

186 The samplings were preferably conducted towards the middle of each stage of the

187 agricultural cycle.

188

189 Spider community sampling and taxonomic identification

190 Spider sampling was performed with three capture methods commonly used to catch 191 these predators (Ubick et al., 2005, Benamú & Viera, 2023), which were used to sample the 192 two main strata of the cultivation plots: the ground (pitfall traps) and the vegetation layer 193 between 0.10 m and 1.80 m (manual capture and foliage beating). The combination of these 194 techniques provides an adequate sampling completeness of the different spider guilds that 195 occur in natural ecosystems and cultivation crops (Sørensen et al., 2002; Jiménez-Valverde 196 & Lobo, 2005; Picchi, 2020). During each stage of the cycle, we established five sampling 197 points in each plot arranged in the shape of a cross: one near each corner of the plot and one 198 in the center. The sampling points were separated from the edge of the plot by at least two 199 meters and from each other by at least five meters. Unbaited pitfall traps were placed in 200 each point, which were left active during 48 hours with a lethal dose of water with salt and 201 detergent. One day after setting up the pitfall traps, we conducted the manual collection and 202 foliage beating in each plot with the help of the farmers. We performed the manual 203 collection for an approximate searching time of 10 minutes around each sampling point. 204 Foliage beating was performed with a circular net, 50 cm in diameter, and a wooden stick 205 to beat the vegetation around each sampling point for an approximate time of 5 minutes. All 206 specimens were collected with pooters and tweezers and preserved in jars with 95% 207 ethanol.

208	Adult and subadult spiders were classified into morphospecies according to their
209	morphological characteristics (somatic and sexual). We only taxonomically identified
210	subadult (with developed somatic characteristics) and adult individuals, and pooled their
211	values. When possible, individuals were assigned to a species using taxonomic keys (Ubick
212	et al., 2005; World Spider Catalog, 2021). The individuals that could not be assigned to a
213	species were identified as morphospecies at the lower taxonomic level possible. The
214	morphospecies codes are exclusive to this study. For the analyses, we used a previously
215	proposed classification of spider trophic guilds (Cardoso et al., 2011; Feber et al., 2015),
216	where species and morphospecies were grouped into three large groups: ground hunters,
217	vegetation hunters, and web-builders. These spider guilds differ in dispersal capacity,
218	agroecosystem stratum, and hunting strategy, which would potentially result in a
219	differential response to the management, landscape, and agricultural cycle of the milpa
220	(Feber et al., 2015; Méndez-Castro et al., 2020; Quijano-Cuervo et al., 2022). Ground
221	hunters, dominated by spiders of the family Lycosidae, are species mainly associated with
222	the ground that disperse by walking and are active hunters. Vegetation hunters, dominated
223	by species of the families Salticidae and Thomisidae, have an intermediate dispersal
224	capacity, mainly occupy the vegetation stratum associated with crop and herbaceous plants,
225	and are also active hunters. As members of the Pachygnatha genus have forfeited their
226	capacity to hunt through webs in their adult stage, they have been classified as Vegetation
227	hunters for this study. In other studies, it is assumed that these spiders hunt on the ground
228	(Harwood et al., 2005; Svobodová et al., 2013); however, in this study, we did not capture
229	or observe individuals of this species on the ground. Web-builders, dominated by the family
230	Lyniphidae, have a high dispersal capacity by ballooning, are mainly associated with the

vegetation stratum of the milpa (except spiders of the genus *Erigone* assigned to *ground hunters*), and hunt using their webs (Carvalho & Cardoso, 2014; Wu et al., 2017; MéndezCastro et al., 2020; Quijano-Cuervo et al., 2022).

234

235 Characterization of the landscape surrounding the *milpas*

236 To characterize the landscape surrounding the study plots, we created a land-use 237 cover map using a supervised classification of the Sentinel satellite image (downloaded 238 from earthexplorer.usgs.gov, and composed of spectral bands 2, 3, 4, 8; with 10-meter 239 resolution) of the area surrounding the study plots (e.g. Nivedita Privadarshini et al., 2018). 240 We generated a map of the four main land-use covers in the area: crops (milpas), forest 241 (remnants and cultivated), pastures/shrubs, and urban zones (houses and roads) (Figure 1). For the classification, we first carried out a manual training that consisted in generating 242 243 training polygons of each land-use (based on previous knowledge of the area) to 244 subsequently obtain the spectral signatures of the pixels. The spectral signatures of each 245 land-use were used to make a classification of the composite satellite image with the 246 method of maximum likelihood, assigning equal probability to all classes and a rejection 247 fraction of 5%. All analyses were performed in OGIS 3.26 (OGIS Development Team, 248 2023). To select the buffer extent where the effect of landscape composition on spider 249 community was stronger (scale of effect, sensu Jackson & Fahrig, 2015), we constructed 250 generalized linear models ("poisson" error and "log" link function). For these models, we 251 used as dependent variables the richness and abundance of the whole spider community 252 (*i.e.* without discriminating by guild) and as explanatory variable the extent of the surface 253 of each land-use in 8 buffers of different diameter. The buffers around the plots ranged

254	from a 50-meter radius from the center of the plot to 400 meters, increasing every 50
255	meters. We defined a maximum buffer extent of 400 meters, since larger buffer extents
256	almost completely overlapped between plots. We constructed a model for each buffer
257	diameter (8 buffers) of each land-use (four land-uses) for a total of 32 models for each
258	dependent variable (richness and abundance). We used the R^2 (coefficient of determination)
259	of the models as the criterium to select the scale of effect (<i>i.e.</i> the spatial extents that best
260	explain the patterns encountered, Jackson & Fahrig, 2015), which in the case of our study
261	was 300 meters. We found that the best fit occurred in this extent (300 meters, see table
262	S2), which agrees with the intermediate extents found to be significant in previous studies
263	with spiders in winter wheat fields (95 m $-$ 3000 m, Schmidt et al., 2008). In order to
264	ensure that the proximity of the study plots did not contain spatial autocorrelation that
265	caused problems of lack of spatial independence in the linear models (see below)
266	(Zuckerberg et al., 2020), we evaluated the autocorrelation of the model residuals using
267	classical variography following Negrete-Yankelevich & Fox, (2015). We fitted theoretical
268	variograms (spherical, exponential and gaussian) using weighted least squares to determine
269	if there were aggregation patches in the model residuals using the package geoR (Ribeiro &
270	Diggle, 2018) in R (R Core Team, 2020).
271	
272	Models of the relationship between spider richness and abundance and local

273

management, landscape, and agricultural cycle

We evaluated the effect of plot diversification, landscape, and agricultural cycle on spider abundance (*negative-binomial* error) and richness (*poisson* and *negative-binomial* error) using generalized linear models (GLMs) with the *glm* function of the R package *stats*

277 (R Core Team, 2022). Given the high correlation between the extents of landscape habitats $(Pearson's \ r_{(forest - crops)} = -0.95, p = < 0.001; Pearson's \ r_{(forest - urban zones)} = -0.90, p = < 0.001,$ 278 279 *Pearson's* $r_{\text{(forest - pastures)}} = -0.11$, p = 0.39), and the recognized importance of the forest as a 280 reservoir of spider diversity (Schmidt et al., 2005), we only used as landscape variable the 281 forest extent surrounding the plots. Our full model included the following explanatory 282 variables: agricultural cycle stage as a factor with five levels, plant diversification treatment 283 as a factor with three levels (three diversification treatments), forest extent as continuous 284 variables measured in the 300-m buffer, and all the second order interactions of these 285 variables. Given that the values of *forest* extent differed by several orders of magnitude 286 compared to the response variables, we rescaled that variable for our models by dividing 287 each value by the root mean square using the scale function in R. To obtain the minimum 288 adequate model, we used the dredge function of the R package MuMIn to generate an 289 automated model selection (Bartoń, 2022). This function selects the models with greater 290 explanatory power and lower number of parameters among all independent variable 291 combinations and their interactions (to the second order in our case). In the case of our 292 study, we selected as plausible models those with the lowest AIC value and that differed in 293 at least two units from the null model (variable= variable's mean) (Burnham & Anderson, 294 2002). During the initial phases of analysis, we built mixed models with temporal replicates 295 as a random factor, however the variation associated with this factor did not have a 296 significant contribution and therefore was not retained in the final models (see Table 1, 297 Figure S1). We verified that the final models satisfied the assumptions of normality, 298 homoscedasticity, and absence of overdispersion (in the case of poisson distribution) and 299 spatial autocorrelation of residuals. These analyses were performed for the whole spider

300 community and for each of the three spider guilds (ground hunters, vegetation hunters, and

301 *web-builders*).

302

303 Results

Spider fauna in the *milpas*

305 We collected a total of 1933 spiders grouped into 68 morphospecies (50% 306 identified to genus) and 13 families (see supplementary Table S1). Lycosidae was the most 307 abundant family in the study milpas (1221 individuals, 63%), while Linyphiidae had the 308 highest number of morphospecies (14 species, 20%). Two morphospecies of the family 309 Lycosidae (Pardosa sp1 and sp2) and one of Lyniphiidae (Erigone sp1) had the highest 310 number of individuals in the entire study, contributing with 64% of total abundance (Table 311 S1). Ground-hunting spiders were dominated by one species of the genus Pardosa (P. sp1, 312 53%), while *vegetation hunters* were dominated by one species of the family Anyphaenidae 313 (Anyphaena sp2, 43%), and web-builders were dominated by a species of the family 314 Theridiidae (*Theridion* sp3, 3%) (Table A.2). 315 316 Effect of plant diversification, landscape, and agricultural cycle on the richness 317 and abundance of spider guilds 318 We found that plant diversification, forest vegetation areas in the surrounding

landscape, and agricultural cycle had an additive, but not interactive, effect on the richness
and abundance of the spider guilds or the total spider community (Table 1, Figures 3 and
4). The plots diversified with legumes and leafy plants always had a higher abundance of
the entire spider community and *ground hunters* compared to the other plant diversification

323	treatments (Table 1, Figure 3). Spider abundance was positively associated with the forest
324	area surrounding the crop plots, in the entire community ($\beta_{slope} = 0.69$) and in the ground
325	<i>hunter</i> ($\beta_{slope} = 1.11$) (Table 1, Figures 3 and 4). The richness of the entire community (β
326	$_{slope} = 0.13$) and of vegetation hunters ($\beta_{slope} = 0.18$) was also positively associated with the
327	forest area surrounding the crop plots (Figure 4A and 4C). Richness and abundance of web-
328	builder spiders were not affected by plant plot diversification or forest areas around milpas.
329	With respect to temporal variation, the richness of the entire spider community and
330	the richness and abundance of vegetation hunters and web-builders increased during the
331	intermediate stages of the agricultural cycle, that is, during the growth and fructification
332	stages (Table 1, Figure 4C-F). In contrast, ground-hunting spiders showed higher
333	abundance during the winter and planting stages (Table 1, Figure 4B).
334	
335	Discussion
336	It has been proposed that crop diversification promotes the presence of spiders
337	(Sunderland & Samu, 2000), which provide ecosystem services such as pest control
338	(Michalko et al., 2019). However, the effect of these agroecological practices likely
339	depends on the composition of the landscape surrounding the crops (Galloway et al., 2021)
340	and the stage of the agricultural cycle in annual crops (Birkhofer et al., 2013; Schmidt et al.,
341	2005; Sunderland & Samu, 2000). In the present study, we found no evidence of such
342	dependence, as each factor operating at the plot (plant diversification) and landscape scale
343	(forest areas), as well as the agricultural cycle, have an additive and independent effect on
344	spider richness and abundance. Furthermore, as predicted, the effect of these factors differs

between spider guilds with different hunting and dispersal strategies (*e.g.* Feber et al.,2015).

347

4.1 Effect of crop diversification and surrounding landscape on spider guilds

348 Our results partially agreed with our hypothesis, since we found that plant 349 diversification in the maize polyculture only had a positive effect on the total abundance of 350 the spider community and the abundance of the dominant spider guild of ground hunters, 351 but not on the species richness of these groups. In addition, contrary to our prediction, this 352 positive effect of diversification did not depend on the extent of the surrounding forest or 353 pasture areas or the stage of the agricultural cycle. Spiders are a group that is sensitive to 354 local vegetation heterogeneity (Tews et al., 2004), and crop diversification benefits the 355 presence of these predators by increasing the number of suitable sites in terms of climate, 356 prey, and shelter from predators (review by Sunderland & Samu, 2000). Other studies have 357 also shown that the diversification of maize crops with legume and other plant species 358 promotes an increase in local spider abundance (Coll & Bottrell, 1995; Gliessman, 2014; 359 Midega et al., 2008), and this increased abundance may have direct implications on the 360 density-dependent control of maize pests (Letourneau, 1986, 1987, 1990). It is likely that 361 we did not detect a significant interaction between local management and the surrounding 362 landscape because, in this annual system, in addition to medium-sized forest or pasture 363 areas (300 m around), spiders could also depend on more local shelters. Live fences or 364 herbaceous fields at the edge of or within cultivation plots might constitute refuges from 365 where spiders can rapidly colonize the crops (Denys & Tscharntke, 2002; Amaral et al., 366 2016), particularly dominant spiders such as Lycosids (Schmidt-Entling & Döbeli, 2009).

367	We found that the abundance of ground-hunting spiders was positively affected by
368	crop diversification with two plant groups: legumes (P. vulgaris, P. sativum, V. faba) and
369	leafy plants (B. vulgaris, C. sativum). This suggests that, in order to have a positive effect,
370	it is necessary to generate a minimum level of vegetation structure or crop diversification at
371	least at two relevant stages of the agricultural cycle (Sunderland & Samu, 2000; Poveda et
372	al., 2008). The addition of a dense vegetation structure close to the ground promoted by
373	leafy plants may have benefited ground-hunting spiders in particular, and not the other
374	spider guilds with more specific vegetation structure requirements (Rypstra et al., 1999;
375	Benamú et al., 2017). Moreover, it is possible that the addition of legumes in winter, a stage
376	when ground spiders are more likely to occur (Nyffeler & Benz, 1988), promotes the
377	accumulation of these spiders in the diversified plots from the first stages of the agricultural
378	cycle and they remain there throughout the cycle.
379	Similarly to our result, other studies have shown that only spider abundance
380	responds positively to local crop management (Sunderland & Samu, 2000; Rusch et al.,
381	2014; Dassou & Tixier, 2016), and that species richness is not always benefited by plot
382	management through diversification (Beaumelle et al., 2021). The two plant groups used
383	for crop diversification may not have provided enough variety in vegetation structure and
384	prey (Poveda et al., 2008) for different spider species to occur in the plots. The purpose of
385	the crop diversification in the present study was not only to promote the presence of
386	predators, but also to improve the chemical properties of the soil and make an integral
387	contribution to the diet of the farmers (Martínez-Camacho et al., 2022). It has been
388	proposed that, to promote an increase in spider richness, it is necessary to identify and
389	provide the functionally important elements of plant diversity that benefit different guilds

(*e.g.* different strata such as herbs and shade trees), rather than promoting plant diversity *per se* (Landis et al., 2005; Poveda et al., 2008). An increase in spider diversity, and not only in the abundance of dominant species, may likely result in a greater contribution to pest control in crops (Letourneau et al., 2009), since more spider species with different hunting strategies, preferred strata, and temporal dynamics would cover a large part of the spectrum used by pests in cultivation crops.

396 We found that a larger forest area in the surrounding landscape had a positive 397 relationship with the richness and abundance of the entire spider community and the 398 vegetation and ground hunter guilds. Different studies have demonstrated the positive 399 effect that large extents of forest areas have on spider diversity, which may be due to 400 natural habitats around cultivation plots serving as regional sources of spiders and 401 providing additional prey during stages of low food availability and severe weather 402 conditions, especially in annual crops (Birkhofer et al., 2013; Schmidt et al., 2008, 2005; 403 Schmidt & Tscharntke, 2005). As predicted, the landscape had a stronger effect on ground-404 hunting spiders (i.e. relationship with a steeper slope, see Figures 3-4 and Table 1), which 405 have a lower dispersal capacity than vegetation hunters and web-builders (Pearce et al., 406 2005; Feber et al., 2015). These results agree with previous evidence; for example, a study 407 conducted in winter wheat fields where Feber et al., (2015) found that the positive effect of 408 the landscape on spider abundance was stronger in terrestrial spiders with a limited 409 dispersal capacity such as those of the family Lycosidae. It has been shown that spiders 410 with low dispersal capacity colonize crops from their shelters in the landscape (Lemke & 411 Poehling, 2002; Schmidt et al., 2005), which results in a higher probability of these spiders 412 arriving to plots with a higher number of and greater proximity to forest areas.

413

414 **4.2 Effect of the agricultural cycle on spider richness and abundance**

415 There is little evidence related to the effect of the agricultural cycle of crops on 416 spider communities (but see Benamú et al., 2017; Triquet et al., 2022). In the present study, 417 we found that the possible variation in habitat availability, weather conditions, and 418 agricultural practices (Kennedy & Storer, 2000) may be associated with the guild-419 dependent variation in spider abundance and richness among the stages of the agricultural 420 cycle. The richness and abundance of web-building and vegetation-hunting spiders were 421 higher during the intermediate stages of the agricultural cycle. Consistent with our results, 422 Triquet et al., (2022) showed that spider diversity was higher towards the middle of the 423 annual cycle of maize, which was when the crop plants were at their peak of vegetative 424 development (growth and fructification stages). In our study scenario, during these 425 intermediate periods of the agricultural cycle, in addition to crop plants being at their peak 426 developmental time (maize, beans, and squash), other vegetation strata that increase the 427 heterogeneity of the plots may be present, such as strata herbaceous plants (personal 428 observation), which farmers remove by hand only at the beginning of crop growth to 429 prevent competition, and are known to particularly benefit spider guilds that hunt in the 430 vegetation (Benamú et al., 2017; Benamú & Viera, 2023).

In contrast to other guilds, *ground-hunting* spiders were more abundant during the initial stages of the agricultural cycle, that is, during winter and planting. It is known that spiders of the family Lycosidae are an important component of winter communities because they are generalists and multivoltine and, unlike other spider families, find shelter from the weather in elements such as mulch (Nyffeler & Benz, 1988). This finding is critical for pest

436	management in annual crops, since the colonization and massive occurrence of spiders
437	during the early stages of the agricultural cycle may help mitigate the damage caused by
438	pests (Birkhofer et al., 2013; Gavish-Regev et al., 2008). With the objective of promoting
439	the presence of diverse spider guilds during most stages of the agricultural cycle, and thus
440	ensure a potential control of pest populations in all strata (<i>i.e.</i> vegetation and ground),
441	cultivation plots should not have bare soil and should have a diverse vegetation cover, for
442	instance, by adding mulch covers, planting winter crops (as in our study), or creating
443	nearby shelters for spiders, such as live fences or herbaceous fields (Birkhofer et al., 2013;
444	Triquet et al., 2022, Halaj et al., 2000; Rypstra et al., 1999).
445	
446	5. Conclusions
447	Our findings empirically highlight that spiders are a predator group with a complex
448	response to local factors and the surrounding landscape (Schmidt et al., 2008; Birkhofer et
449	al., 2013), and that multiple vegetation elements and strata should be used, both at the plot
450	(e.g. vegetation edges, herbaceous plants, added plants, crop density) and landscape (e.g.
451	forest proximity and surface area or connectivity) scales in order to promote functionally
452	diverse spider communities in agrolandscapes. It is also necessary consider the complex
453	
	temporal dynamics related to variation in weather conditions, crop development, and
454	temporal dynamics related to variation in weather conditions, crop development, and agricultural practices (<i>e.g.</i> tillage and harvest). All these elements (vegetation added to
454 455	temporal dynamics related to variation in weather conditions, crop development, and agricultural practices (<i>e.g.</i> tillage and harvest). All these elements (vegetation added to plots, forest cover, and stages of the agricultural cycle) had an additive, but guild-
454 455 456	temporal dynamics related to variation in weather conditions, crop development, and agricultural practices (<i>e.g.</i> tillage and harvest). All these elements (vegetation added to plots, forest cover, and stages of the agricultural cycle) had an additive, but guild- dependent, effect on the spider community in our study.
454 455 456 457	temporal dynamics related to variation in weather conditions, crop development, and agricultural practices (<i>e.g.</i> tillage and harvest). All these elements (vegetation added to plots, forest cover, and stages of the agricultural cycle) had an additive, but guild- dependent, effect on the spider community in our study. We suggest that, in highly dynamic systems such as annual crops, plant

458 diversification in cultivation plots should aim to generate diverse vegetation strata

459	throughout the agricultural cycle, which would promote the presence of diverse spider
460	communities (Sunderland & Samu, 2000). Many of the efforts to improve agrodiversity
461	have been concentrated at a local scale (plot or <i>parcela</i> [piece of rural or agricultural land]
462	management) (Sunderland & Samu, 2000; Wezel et al., 2014), without considering the
463	effect of the surrounding landscape on the communities of beneficial organisms such as
464	natural controllers (Gonthier et al., 2014). The findings of the present experimental study,
465	together with previous evidence (Schmidt & Tscharntke, 2005; Gallé et al., 2019), indicate
466	the need to consider the use of multiple elements of agricultural landscapes (Salman et al.,
467	2019) in order to improve the presence of diverse spider guilds, since this may potentially
468	reduce the use of pesticides (Wezel et al., 2014).

470 Acknowledgments

- 471 The authors thank the Mexican National Council of Science and Technology for the
- 472 PhD scholarship provided to Luis G. Quijano-Cuervo (Conacyt No. 862395). This work is
- 473 part of the ManoVuelta project (Conacyt PRONAII SySS 319067 Biodiversidad en la
- 474 milpa y su suelo: bases de la seguridad alimentaria de mujeres, adolescentes y niños
- 475 *rurales*). We also thank the producers of the Ocotepec community, Victor Vásquez Reyes,
- 476 Mauricio Olvera Pale and Salvador González (*Chava*) for their dedicated field work.

- 478 **References**
- 479 Altieri, M.A. & Trujillo, J. (1987) The agroecology of corn production in Tlaxcala,
- 480 Mexico. *Human Ecology*, 15, 189–220.
- 481 Amaral, D.S.S.L., Venzon, M., Santos, H.H. dos, Sujii, E.R., Schmidt, J.M. &
- 482 Harwood, J.D. (2016) Non-crop plant communities conserve spider populations in chili
- 483 pepper agroecosystems. *Biological Control*, 103, 69–77.
- 484 Batáry, P., Báldi, A., Kleijn, D. & Tscharntke, T. (2011) Landscape-moderated
- 485 biodiversity effects of agri-environmental management: A meta-analysis. *Proceedings of*
- 486 the Royal Society B: Biological Sciences, 278, 1894–1902.
- 487 Beaumelle, L., Auriol, A., Grasset, M., Pavy, A., Thiéry, D. & Rusch, A. (2021)
- 488 Benefits of increased cover crop diversity for predators and biological pest control depend

489 on the landscape context. *Ecological Solutions and Evidence*, 2, 1–12.

- 490 Benamú, M.A., Lacava, M., García, L.F., Santana, M. & Viera, C. (2017) Spiders
- 491 associated with agroecosystems: Roles and perspectives. In: *Behaviour and Ecology of*
- 492 Spiders: Contributions from the Neotropical Region. Springer International Publishing, pp.
- 493 275–302.
- 494 Birkhofer, K., Entling, M.H. & Lubin, Y. (2013) Agroecology: Trait composition,

495 spatial relationships, trophic interactions. In: Penney, D. (Ed.) Spider Research in the 21st

496 *Century trends & perspectives*. Siri Scientific Press, Manchester, pp. 200–229.

- 497 Burnham, K.P. & Anderson, D.R. (2002) Model Selection and Multimodel
 498 Inference, 2nd ed. Springer.
- 499 Cardoso, P., Pekár, S., Jocqué, R. & Coddington, J.A. (2011) Global patterns of
- 500 guild composition and functional diversity of spiders. *PLoS ONE*, 6, 1–10.

501	Carvalho, J.C. & Cardoso, P. (2014) Drivers of beta diversity in Macaronesian
502	spiders in relation to dispersal ability. Journal of Biogeography, 41, 1859–1870.
503	Coll, M. & Bottrell, D. (1995) Predator-prey association in mono- and dicultures:
504	Effect of maize and bean vegetation. Agriculture, Ecosystems & Environment, 54, 115-125.
505	Dassou, A.G. & Tixier, P. (2016) Response of pest control by generalist predators to
506	local-scale plant diversity: A meta-analysis. Ecology and Evolution, 6, 1143–1153.
507	Dauber, J., Purtauf, T., Allspach, A., Frisch, J., Voigtländer, K. & Wolters, V.
508	(2005) Local vs. landscape controls on diversity: A test using surface-dwelling soil
509	macroinvertebrates of differing mobility. Global Ecology and Biogeography, 14, 213-221.
510	Denys, C. & Tscharntke, T. (2002) Plant-insect communities and predator-prey
511	ratios in field margin strips, adjacent crop fields, and fallows. Oecologia, 130, 315-324.
512	Feber, R.E., Johnson, P.J., Bell, J.R., Chamberlain, D.E., Firbank, L.G., Fuller, R.J.,
513	et al. (2015) Organic farming: Biodiversity impacts can depend on dispersal characteristics
514	and landscape context. PLoS ONE, 10, 1–20.
515	Gallé, R., Happe, A.K., Baillod, A.B., Tscharntke, T. & Batáry, P. (2019)
516	Landscape configuration, organic management, and within-field position drive functional
517	diversity of spiders and carabids. Journal of Applied Ecology, 56, 63–72.
518	Galloway, A.D., Seymour, C.L., Gaigher, R. & Pryke, J.S. (2021) Organic farming
519	promotes arthropod predators, but this depends on neighboring patches of natural
520	vegetation. Agriculture, Ecosystems and Environment, 310, 107295.
521	Gavish-Regev, E., Lubin, Y. & Coll, M. (2008) Migration patterns and functional
522	groups of spiders in a desert agroecosystem. Ecological Entomology, 33, 202-212.

523	Geldenhuys, M.,	Gaigher, R., Pryke, J.S.	& Samways, M.J.	(2021) Diverse
-----	-----------------	--------------------------	-----------------	----------------

- 524 herbaceous cover crops promote vineyard arthropod diversity across different management
- 525 regimes. Agriculture, Ecosystems and Environment, 307, 107222.
- 526 Gliessman, S.R. (2015) Agroecology The Ecology of Sustainable Food Systems,
- 527 3rd ed. CRC Press.
- 528 Gonthier, D.J., Ennis, K.K., Farinas, S., Hsieh, H.Y., Iverson, A.L., Batáry, P., et al.
- 529 (2014) Biodiversity conservation in agriculture requires a multi-scale approach.
- 530 *Proceedings of the Royal Society B: Biological Sciences*, 281, 9–14.
- 531 Isakson, S.R. (2009) No hay ganancia en la milpa: The agrarian question, food
- sovereignty, and the on-farm conservation of agrobiodiversity in the Guatemalan highlands.
- 533 *Journal of Peasant Studies*, 36, 725–759.
- Jackson, H.B. & Fahrig, L. (2015) Are ecologists conducting research at the optimal
- scale? *Global Ecology and Biogeography*, 24, 52–63.
- 536 Jiménez-Valverde, A. & Lobo, J.M. (2005) Determining a Combined Sampling
- 537 Procedure for a Reliable Estimation of Araneidae and Thomisidae Assemblages
- 538 (Arachnida, Araneae). *Journal of Arachnology*, 33, 33–42.
- 539 Kennedy, G.G. & Storer, N.P. (2000) Life systems of polyphagous arthropod pests
- 540 in temporally unstable cropping systems. *Annual Review of Entomology*, 45, 467–493.
- 541 Landis, D.A., Menalled, F.D., Costamagna, A.C. & Wilkinson, T.K. (2005)
- 542 Manipulating plant resources to enhance beneficial arthropods in agricultural landscapes.
- 543 *Weed Science*, 53, 902–908.
- 544 Letourneau, D.K. (1986) Associational Resistance in Squash Monocultures and
- 545 Polycultures in Tropical Mexico. *Environmental Entomology*, 15, 285–292.

546	Letourneau, D.K. (1987) The Enemies Hypothesis: Tritrophic Interactions and
547	Vegetational Diversity in Tropical Agroecosystems. Ecology, 68, 1616–1622.
548	Letourneau, D.K. (1990) Mechanisms of predator accumulation in a mixed crop
549	system. Ecological Entomology, 15, 63–69.
550	Letourneau, D.K., Jedlicka, J.A., Bothwell, S.G. & Moreno, C.R. (2009) Effects of
551	Natural Enemy Biodiversity on the Suppression of Arthropod Herbivores in Terrestrial
552	Ecosystems. Annual Review of Ecology, Evolution, and Systematics, 40, 573–592.
553	Lichtenberg, E.M., Kennedy, C.M., Kremen, C., Batáry, P., Berendse, F.,
554	Bommarco, R., et al. (2017) A global synthesis of the effects of diversified farming systems
555	on arthropod diversity within fields and across agricultural landscapes. Global Change
556	Biology, 23, 4946–4957.
557	Martínez-Camacho, Y.D., Negrete-Yankelevich, S., Maldonado-Mendoza, I.E.,
558	Núñez-de la Mora, A. & Amescua-Villela, G. (2022) Agroecological management with
559	intra- and interspecific diversification as an alternative to conventional soil nutrient
560	management in family maize farming. Agroecology and Sustainable Food Systems, 46,
561	364–391.
562	Méndez-Castro, F.E., Mendieta-Leiva, G., Rao, D. & Bader, M.Y. (2020) Island-
563	biogeographic patterns of spider communities on epiphytes depend on differential space use
564	among functional groups. Journal of Biogeography, 47, 1322-1332.
565	Michalko, R. & Košulič, O. (2019) The management type used in plum orchards
566	alters the functional community structure of arthropod predators. International Journal of
567	Pest Management, 66, 173-181.

568	Michalko	D & Dalsár	S (2016) Different hunting	a stratagias of	anaralist produtors
508	when alko,	, N. & I CKAI,	5. (2010) Different fluitting	z silalegies of	generalist predators

- result in functional differences. *Oecologia*, 181, 1187–1197.
- 570 Michalko, R., Pekár, S. & Entling, M.H. (2019) An updated perspective on spiders
- as generalist predators in biological control. *Oecologia*, 189, 21-36.
- 572 Midega, C.A.O., Khan, Z.R., Berg, J. Van Den, Ogol, C.K.P.O., Dippenaar-
- 573 Schoeman, A.S., Pickett, J.A., et al. (2008) Response of ground-dwelling arthropods to a
- 574 "push-pull" habitat management system: Spiders as an indicator group. Journal of Applied
- 575 *Entomology*, 132, 248–254.
- 576 Negrete-Yankelevich, S. & Fox, G.A. (2015) Spatial variation and linear modeling
- 577 of ecological data. In: Fox, G.A., Negrete-Yankelevich, S. & Sosa, V.J. (Eds.) Ecological
- 578 statistics: contemporary theory and application. Oxford University Press, Oxford, United
- 579 Kingdom, pp. 228–260.
- 580 Nivedita Priyadarshini, K., Kumar, M., Rahaman, S.A. & Nitheshnirmal, S. (2018)
- a Comparative Study of Advanced Land Use/Land Cover Classification Algorithms Using
- 582 Sentinel-2 Data. The International Archives of the Photogrammetry, Remote Sensing and
- 583 Spatial Information Sciences, XLII–5, 665–670.
- Nyffeler, M. & Benz, G. (1988) Feeding ecology and predatory importance of wolf
 spiders (Pardosa spp.) (Araneae, Lycosidae) in winter wheat fields. *Journal of Applied Entomology*, 106, 123–134.
- Pearce, S., Zalucki, M.P. & Hassan, E. (2005) Spider ballooning in soybean and
 non-crop areas of southeast Queensland. Agriculture, *Ecosystems and Environment*, 105,
 273–281.

	Obra publicada: Quijano-Cuervo, L. G., del-Val, E., Macías-Ordóñez, R., Dáttilo, W., & Negrete-Yankelevich, S. (2024). Spider guilds in a maize polyculture respond differently to plant diversification, landscape composition and stage of the agricultural cycle. Agricultural and Forest Entomology, 26(3), 373-385.
590	Picchi, M.S. (2020) Spiders (Araneae) of olive groves and adjacent semi-natural
591	habitats from central Italy. Arachnologische Mitteilungen, 60, 1–11.
592	Picchi, M.S., Bocci, G., Petacchi, R. & Entling, M.H. (2016) Effects of local and
593	landscape factors on spiders and olive fruit flies. Agriculture, Ecosystems and Environment,
594	222, 138–147.
595	Poveda, K., Gómez, M.I. & Martínez, E. (2008) Diversification practices: Their
596	effect on pest regulation and production. Revista Colombiana de Entomología, 34, 131-
597	144.
598	Quijano-Cuervo, L.G., Rao, D., Escobar Sarria, F., Dáttilo, W. & Negrete-
599	Yankelevich, S. (2022) Shade tree isolation in pastures modulates diversity of epiphyte-
600	dwelling spiders: The role of epiphyte biomass and species dispersal capacity. Insect
601	Conservation and Diversity, 15, 682-692.
602	Rusch, A., Birkhofer, K., Bommarco, R., Smith, H.G. & Ekbom, B. (2014)
603	Management intensity at field and landscape levels affects the structure of generalist
604	predator communities. Oecologia, 175, 971–983.
605	Rypstra, A.L., Carter, P.E., Balfour, R.A. & Marshall, S.D. (1999) Architectural
606	features of agricultural habitats and their impact on the spider inhabitants. Journal of
607	Arachnology, 27, 371–377.
608	Salman, I.N.A., Gavish-Regev, E., Saltz, D. & Lubin, Y. (2019) The agricultural
609	landscape matters: spider diversity and abundance in pomegranate orchards as a case study.
610	<i>BioControl</i> , 64, 583–593.
611	Schmidt-Entling, M.H. & Döbeli, J. (2009) Sown wildflower areas to enhance
612	spiders in arable fields. Agriculture, Ecosystems and Environment, 133, 19-22.

613	Schmidt, M.H., Roschewitz, I., Thies, C. & Tscharntke, T. (2005) Differential
614	effects of landscape and management on diversity and density of ground-dwelling farmland
615	spiders. Journal of Applied Ecology, 42, 281–287.
616	Schmidt, M.H., Thies, C., Nentwig, W. & Tscharntke, T. (2008) Contrasting
617	responses of arable spiders to the landscape matrix at different spatial scales. Journal of
618	<i>Biogeography</i> , 35, 157–166.
619	Schmidt, M.H. & Tscharntke, T. (2005) Landscape context of sheetweb spider
620	(Araneae: Linyphiidae) abundance in cereal fields. Journal of Biogeography, 32, 467-473.
621	Sørensen, L.L., Coddington, J. a. & Scharff, N. (2002) Inventorying and Estimating
622	Subcanopy Spider Diversity Using Semiquantitative Sampling Methods in an Afromontane
623	Forest. Environmental Entomology, 31, 319–330.
624	Sunderland, K. & Samu, F. (2000) Effects of agricultural diversification on the
625	abundance, distribution, and pest control potential of spiders: A review. Entomologia
626	Experimentalis et Applicata, 95, 1-13.
627	Tews, J., Brose, U., Grimm, V., Tielbörger, K., Wichmann, M.C., Schwager, M., et
628	al. (2004) Animal species diversity driven by habitat heterogeneity/diversity: the
629	importance of keystone structures. Journal of Biogeography, 31, 79-92.
630	Thomas, C.F.G., Brain, P. & Jepson, P.C. (2003) Aerial activity of linyphiid
631	spiders: Modelling dispersal distances from meteorology and behaviour. Journal of Applied
632	<i>Ecology</i> , 40, 912–927.
633	Triquet, C., Roume, A., Tolon, V. & Wezel, A. (2022) Undestroyed winter cover
634	crop strip in maize fields supports ground-dwelling arthropods and predation. Agriculture,
635	Ecosystems and Environment, 326, 107783.

- 636 Ubick, D., Paquin, P., Cushing, P.E. & Roth, V. (2005) Spiders of North America:
- 637 an identification manual. American Arachnological Society.
- 638 Wezel, A., Casagrande, M., Celette, F., Vian, J.F., Ferrer, A. & Peigné, J. (2014)
- 639 Agroecological practices for sustainable agriculture. A review. Agronomy for Sustainable
- 640 *Development*, 34, 1–20.
- 641 Wu, L., Si, X., Didham, R.K., Ge, D. & Ding, P. (2017) Dispersal modality
- 642 determines the relative partitioning of beta diversity in spider assemblages on subtropical
- 643 land-bridge islands. *Journal of Biogeography*, 44, 2121–2131.
- 644 Zizumbo, D., Flores, A. & Colunga, P. (2012) The Archaic Diet in Mesoamerica:
- 645 Incentive for Milpa Development and Species Domestication 1. Economic Botany, 66, 328-
- 646 343.
- 647 Zuckerberg, B., Cohen, J.M., Nunes, L.A., Bernath-Plaisted, J., Clare, J.D.J.,
- 648 Gilbert, N.A., et al. (2020) A Review of Overlapping Landscapes: Pseudoreplication or a
- 649 Red Herring in Landscape Ecology? *Current Landscape Ecology Reports*, 5, 140–148.
- 650
- 651

652 **Figures and tables**

Figure 1. Study area location and map of the main land uses. Land uses were generated
from the supervised classification of a Sentinel image (10-meter resolution). Colors: black=
plots with the basic triad Maize-Bean-Squash (M-B-S), dark grey= plots with the basic
triad and added legumes (M-B-S + L), white= plots with the basic triad and added legumes
and leafy plants (M-B-S + L+H).

- **Figure 3**. Effect of plant diversification and the surrounding landscape on the
- abundance of the entire spider community and *ground-hunting* spiders. M-B-S = plots with
- 670 the basic triad Maize-Bean-Squash, M-B-S + L = plots with the basic triad and additional
- 671 legumes, M-B-S + L+H = plots with the basic triad, legumes, and added leafy plants.
- 672 Different letters to the right of the fitted lines indicate significant differences between the
- 673 intercepts. Note that we plotted different trendlines with different intercepts but with the
- same slopes, which denotes lack of interaction between factors.
- 675

- **Figure 4.** Effect of the milpa agricultural cycle and the landscape on the richness
- and abundance of the entire spider community and the spider guilds. Different letters to the
- 679 right of the fitted lines indicate significant differences between the intercepts. Note that we
- 680 plotted different trendlines with different intercepts but with the same slopes, which
- denotes lack of interaction between factors. The error lines in figures D and E correspond to
- 682 95% confidence intervals. We only plotted the guilds with significant variation in the
- 683 models.
- 684

- **Table 1.** Summary of the generalized linear models (GLMs) of the richness and abundance
- 687 of the spider community and the spider guilds.

	Dependent	Plant diversification	Landscape	Agricultural cycle	AIC final	AIC Null	AIC Mixed	
Spider guild	variable	(a - intercepts)	$(\beta - slopes)$	(a - intercepts)	model	model (ΔAIC)	model (ΔAIC)	
	Abundance	M-B-S (2.66)						
	(Ln [No. Ind. •	M-B-S + L (2.77)	Forest (0.69)	ni	467.4	490.4 (22.9)	469.3 (1.9)	
	<i>plot</i> ¹])	M-B-S + L+H (3.36)						
Entire				Winter (1.32)				
community	Richness			Planting (1.47)				
	(Ln [No. Sp. •	ni	Forest (0.13)	Growth (2.26)	265.8	315.3 (49.4)	306 (40.1)	
	plot ¹)			Fructification (2.19)				
				Harvest (1.97)				
		M-B-S (1.46)		Winter (2.05)				
Coursed	Abundance	M-B-S + L (1.76)		Planting (1.91)		479.3 (37)	441.5 (0.7)	
Grouna	(Ln [No. Ind. •	M-B-S + L+H (2.18)	Forest (1.11)	Growth (1.67)	442.2			
numers	plot ¹])			Fructification (1.48)				
				Harvest (1.46)				
				Winter (0.95)				
	Abundance			Planting (1.94)		320.3 (5.5)	335.4 (20.6)	
	(Ln [No. Ind. •	ni	Forest (0.32)	Growth (1.87)	314.7			
	plof ¹])			Fructification (1.71)				
Vegetation				Harvest (1.40)				
hunters				Winter (0.04)				
	Richness			Planting (0.42)				
	(Ln [No. Sp. •	ni	Forest (0.24)	Growth (1.17)	181.8	193.6 (11.7)	205.6 (23.7)	
	<i>plot</i> ⁻¹])			Fructification (0.65)				
				Harvest (0.51)				
Web-builders		ni	ni	Winter (0.76)	256.7	278.7 (21.9)	281.1 (24.3)	

			Planting (0.61)							
Abundance			Growth (2.31)							
(Ln [No. Ind. •		Fructification (2.09)								
plot ¹])		Harvest (1.83)								
			Winter (0.45)							
Richness			Planting (0.45)							
(Ln [No. Sp. •	_{[No. Sp.} , ni ni		Growth (1.45)	190.2	204.1 (13.8)	217.5 (27.2)				
plof ¹])			Fructification (1.51)							
			Harvest (1.21)							

688 Abbreviations: ni, factor not included in the model. Indicates that the variable has little explanatory power according to

689 AIC; $\Delta AIC = AIC_{null}$ - the AIC final (AIC_{null} is the AIC of the response variable explained by its mean), M-B-S = Basic

690 milpa triad [maize, beans and squash], M-B-S + L = Basic milpa triad and added legumes [black beans, peas, and faba

beans], M-B-S + L+H = Basic milpa triad, added legumes, and leafy plants [chard and coriander]. Note that the intercept

692 values are expressed as logarithms.

694 Supplementary material

- Table S1. Total abundance of spiders in the plant diversification treatments and the
- 696 agricultural cycle stages.

	Families	Species	Interspecific plant diversification			Agricultural cycle stages					
Guilds			М-В- S	M-B-S + L	M-B-S + L+H	Winter	Planting	Growth	Fructification	Harvest	Total
	Lycosidae	Arctosa spl	34	35	53	75	2	3	28	14	122
	Lycosidae	Arctosa sp2	2	0	0	1	0	0	1	0	2
	Corinnidae	Corinnidae sp1	0	1	0	0	0	1	0	0	1
	Linyphidae	Erigone sp1	27	85	40	33	34	31	34	20	152
	Linyphidae	Erigone sp2	1	0	0	0	1	0	0	0	1
	Gnaphosidae	Gnaphosidae sp1	1	1	0	0	0	0	1	1	2
Ground	Gnaphosidae	Gnaphosidae sp2	0	0	1	0	0	0	1	0	1
hunters	Gnaphosidae	Haplodrassus sp1	1	0	0	0	1	0	0	0	1
	Lycosidae	Lycosidae sp1	0	1	0	0	1	0	0	0	1
	Lycosidae	Lycosidae sp2	0	1	0	0	0	0	1	0	1
	Lycosidae	Pardosa sp1	192	308	245	266	186	106	86	101	745
	Lycosidae	Pardosa sp2	100	137	113	1	93	117	58	81	350
	Corinnidae	Scotinella sp	0	0	1	0	0	1	0	0	1
	Trachelidae	Trachelas spl	3	3	4	0	0	3	3	4	10
	Anyphaenidae	Anyphaena sp1	2	2	0	1	1	2	0	0	4
	Anyphaenidae	Anyphaena sp2	37	33	30	0	0	28	39	33	100
	Anyphaenidae	Anyphaena sp3	7	0	2	0	0	9	0	0	9
	Thomisidae	Misumenoides sp1	1	5	4	0	0	8	1	1	10
	Thomisidae	Misumenoides sp2	4	3	2	0	0	4	4	1	9
	Miturgidae	Miturgidae sp1	1	0	0	0	1	0	0	0	1
Vegetation	Salticidae	Paraphidippus aurantius	5	9	5	0	0	16	3	0	19
hunters	Salticidae	Phidippus audax	1	1	1	0	0	3	0	0	3
	Salticidae	Salticidae sp1	0	3	1	1	1	1	1	0	4
	Salticidae	Salticidae sp2	0	15	46	0	60	0	0	1	61
	Salticidae	Salticidae sp3	0	2	0	0	0	1	1	0	2
	Salticidae	Salticidae sp6	1	1		0	0	0	0	2	2
	Tetragnathidae	Pachygnatha sp1	14	31	29	7	3	5	25	34	74
	Tetragnathidae	Pachygnatha sp2	5	5	6	0	0	6	2	8	16

Obra publicada: Quijano-Cuervo, L. G., del-Val, E., Macías-Ordóñez, R., Dáttilo, W., & Negrete-Yankelevich, S.
(2024). Spider guilds in a maize polyculture respond differently to plant diversification, landscape composition
and stage of the agricultural cycle. Agricultural and Forest Entomology, 26(3), 373-385.

	Tetragnathidae	Pachygnatha sp3	1	1	1	0	0	1	1	1	3
	Tetragnathidae	Pachygnatha sp4	3	0	0	0	0	0	3	0	3
	Tetragnathidae	Pachygnatha sp5	8	8	0	0	0	0	11	5	16
	Thomisidae	Xysticus sp1	0	1	1	0	0	2	0	0	2
	Thomisidae	Xysticus sp2	1	0	0	0	1	0	0	0	1
	Thomisidae	Xysticus sp3	0	0	1	0	0	1	0	0	1
	Thomisidae	Xysticus sp4	0	0	1	0	0	0	0	1	1
	Araneidae	Araneidae sp1	0	1	0	0	0	1	0	0	1
	Araneidae	Araneidae sp2	0	2	1	0	0	3	0	0	3
	Araneidae	Araneidae sp3	1	0	0	0	0	1	0	0	1
	Araneidae	Araneidae sp4	1	0	0	0	0	0	1	0	1
	Araneidae	Araneidae sp5	3	0	0	0	0	0	3	0	3
	Araneidae	Araneus sp	0	1	0	0	0	0	1	0	1
	Araneidae	Eriphora orizabensis	1	1	1	0	0	0	0	3	3
	Theridiidae	Latrodectus sp	0	1	0	0	0	1	0	0	1
	Linyphidae	Linyphiidae sp1	3	7	4	3	1	5	3	2	14
	Linyphidae	Linyphiidae sp2	1	5	3	5	0	1	2	1	9
	Linyphidae	Linyphiidae sp3	0	1	2	0	1	0	0	2	3
	Linyphidae	Linyphiidae sp4	1	0	1	0	2	0	0	0	2
	Linyphidae	Linyphiidae sp5	0	2	0	0	1	0	1	0	2
	Linyphidae	Linyphiinae sp6	7	1	2	1	0	0	4	5	10
Web	Linyphidae	Linyphiidae sp7	0	2	0	0	0	1	1	0	2
builders	Linyphidae	Linyphiidae sp8	1	0	0	0	0	1	0	0	1
	Linyphidae	Linyphiidae sp9	1	0	0	0	0	0	1	0	1
	Linyphidae	Linyphiidae sp10	2	0	0	0	0	0	2	0	2
	Linyphidae	Linyphiidae sp11	0	0	1	0	0	0	1	0	1
	Linyphidae	Linyphiidae sp12	0	0	1	0	0	0	1	0	1
	Pholcidae	Pholcidae sp	0	1	0	0	0	0	0	1	1
	Tetragnathidae	Tetragnatha spl	0	0	3	0	0	0	1	2	3
	Tetragnathidae	Tetragnathidae sp1	0	1	4	0	5	0	0	0	5
	Tetragnathidae	Tetragnathidae sp2	1	0	0	0	0	1	0	0	1
	Tetragnathidae	Tetragnathidae sp3	0	1	0	0	0	1	0	0	1
	Theridiidae	Theridiidae sp1	1	2	0	0	0	3	0	0	3
	Theridiidae	Theridiidae sp2	7	0	2	0	0	6	3	0	9
	Theridiidae	Theridiidae sp3	4	4	4	0	0	3	4	5	12
	Theridiidae	Theridiidae sp4	2	0	0	0	0	0	2	0	2
	Theridiidae	Theridion sp1	3	5	4	1	0	4	3	4	12

Theridiidae	Theridion sp2	5	16	8	0	0	28	1	0	29
Theridiidae	Theridion sp3	17	16	28	0	0	49	12	0	61
Theridiidae	Theridion sp4	0	0	1	0	0	0	0	1	1

698

Table S2. Model results (GLM) used to determine the scale of effect.

Variable	Scale	R ² Abundance	R ² Richness	
	50 m	0.018	0.029	
	100 m	0.026	0.025	
	150 m	0.002	0.027	
Cron area	200 m	0.038	0.012	
Crop area	250 m	0.088	0.007	
	300 m	0.129	0.006	
	350 m	0.128	0.002	
	400 m	0.017	0.001	
	50 m	0.033	0.004	
	100 m	0.087	0.001	
	150 m	0.142	0.001	
Forest area	200 m	0.133	0.012	
r orest area	250 m	0.154	0.033	
	300 m	0.171	0.037	
	350 m	0.133	0.011	
	400 m	0.080	0.003	
	50 m	0.002	0.004	
	100 m	0.000	0.005	
	150 m	0.001	0.005	
Pastura area	200 m	0.014	0.005	
i asture area	250 m	0.054	0.004	
	300 m	0.081	0.003	
	350 m	0.031	0.001	
	400 m	0.022	0.000	
	50 m	0.090	0.007	
	100 m	0.142	0.006	
	150 m	0.180	0.015	
∐rhan area	200 m	0.108	0.004	
	250 m	0.092	0.001	
	300 m	0.087	0.001	
	350 m	0.059	0.001	
	400 m	0.104	0.001	

- Figure S1. Variation associated with plots included as a random factor in the mixed models
- 702 built in the initial analysis phases.

Table S3. Pairwise comparison of the averages estimated in the linear models for the

richness and abundance of the different spider guilds.

			Mean		<i>p</i> value
Guilds	Variable	Pairwise comparation	difference	<i>p</i> value	corrected
		D0 - D1	1.67	0.4	
	Abundance	D0 - D2	7.61	0.006*	0.016*
		D1 - D2	5.93	0.01*	0.03*
		Winter - Planting	0.59	0.44	
		Winter - Growth	5.85	0.00000001*	0.005*
Entire community		Winter - Fructification	5.23	0.0000002*	0.01*
		Winter - Harvest	3.4	0.0002*	0.025*
	Dishuasa	Planting - Growth	5.26	0.0000004*	0.015*
	Richness	Planting - Fructification	4.64	0.000007*	0.02*
		Planting - Harvest	2.81	0.002*	0.03*
		Growth- Fructification	0.61	0.6	
		Growth - Harvest	2.44	0.029*	0.03*
		Fructification - Harvest	1.82	0.1	
	- Abundance	D0 - D1	1.48	5.94E-02	
		D0 - D2	4.59	0.0001*	0.01*
		D1 - D2	3.10	0.005*	0.03*
		Winter - Planting	0.98	0.45	
		Winter - Growth	2.45	0.04*	0.02
		Winter - Fructification	3.36	0.004*	0.01*
Ground		Winter - Harvest	3.44	0.002*	0.005*
numers		Planting - Growth	1.46	0.19	
		Planting - Fructification	2.37	0.028*	0.02
		Planting - Harvest	2.45	0.019*	0.015
		Growth- Fructification	0.91	0.33	
		Growth - Harvest	0.99	0.27	
		Fructification - Harvest	0.07	0.92	
	Abundance	Winter - Planting	5.94	0.001*	0.02*
		Winter - Growth	5.74	0.001*	0.015*
		Winter - Fructification	6.77	0.0007*	0.005*
		Winter - Harvest	5.74	0.001*	0.01*
Vegetation hunters		Planting - Growth	0.19	0.93	
		Planting - Fructification	0.82	0.74	
		Planting - Harvest	0.19	0.93	
		Growth- Fructification	1.02	0.66	
		Growth - Harvest	0.00	1	
		Fructification - Harvest	1.02	0.66	

Obra publicada: Quijano-Cuervo, L. G., del-Val, E., Macías-Ordóñez, R., Dáttilo, W., & Negrete-Yankelevich, S.
(2024). Spider guilds in a maize polyculture respond differently to plant diversification, landscape composition
and stage of the agricultural cycle. Agricultural and Forest Entomology, 26(3), 373-385.

		Winter - Planting	0.26	0.6	
		Winter - Growth	2.36	0.004*	0.01*
		Winter - Fructification	1.67	0.02*	0.015*
		Winter - Harvest	1.51	0.02*	0.025
	Richness	Planting - Growth	2.09	0.002*	0.005*
		Planting - Fructification	1.40	0.025*	0.02
		Planting - Harvest	1.24	0.039	0.03
		Growth- Fructification	0.68	0.31	
		Growth - Harvest	0.8	0.19	
		Fructification - Harvest	0.16	0.79	
	Abundance	Winter - Planting	0.06	0.93	
		Winter - Growth	7.48	0.0001*	0.015*
		Winter - Fructification	2.67	0.0302*	0.03*
		Winter - Harvest	0.80	0.38	
		Planting - Growth	7.41	0.00007*	0.010*
		Planting - Fructification	2.6	0.024*	0.025*
		Planting - Harvest	0.73	0.39	
		Growth- Fructification	4.81	0.003*	0.020*
		Growth - Harvest	6.68	0.00002*	0.005*
Web		Fructification - Harvest	1.87	0.064	
builders	Richness	Winter - Planting	0.13	0.84	
		Winter - Growth	2.55	0.012*	0.01
		Winter - Fructification	1.89	0.03*	0.02
		Winter - Harvest	0.70	0.33	
		Planting - Growth	2.41	0.01*	0.005
		Planting - Fructification	1.75	0.03*	0.02
		Planting - Harvest	0.56	0.4	
		Growth- Fructification	0.65	0.4	
		Growth - Harvest	1.85	0.017*	0.015
		Fructification - Harvest	1.19	0.09	